分类
标签
2-SAT AC自动机 BFS CDQ dfs DP fail树 FFT FFT&NTT FWT hash KD-Tree KMP LCA SPFA STL Tarjan Treap Trie 主席树 乱搞 二分 二分图匹配 二分答案 二维SPFA 交互 位运算 其他 最小生成树 分块 区间DP 半平面交 博弈论 可持久化 可持久化Trie树 后缀数组 图库 平衡树 并查集 插头DP 数学 数论 无旋Treap 日记 暴力 权值树状数组 栈 树DP 树套树 树状数组 树贪心 概率DP 模拟 欧拉定理 点分治 状压DP 生成函数 矩阵乘 线性规划 线段树 组合 网络流 群论 莫比乌斯反演 计算几何 贪心 费用流 高斯消元
1021 字
5 分钟
后缀数组
后缀数组
详解 请参见 IOI2009 国家集训队论文
例3:不可重叠最长重复子串(pku1743)
先二分答案,判断是否存在两个长度为 k 的子串是相同的,且不重叠。
对于每组后缀,判断后缀的sa值的最大值和最小值之差是否不小于k
Code
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAXN = 20010;
int buc[MAXN], wa[MAXN], wb[MAXN], n;
int r[MAXN], sa[MAXN], Rank[MAXN], height[MAXN];
void getheight(int n)
{
int i, j, k = 0;
for (i = 0; i < n; i++)
Rank[sa[i]] = i;
for (i = 0; i < n; height[Rank[i++]] = k)
for (k ? k-- : 0, j = sa[Rank[i] - 1]; r[i + k] == r[j + k]; k++)
;
return;
}
bool cmp(int *c, int a, int b, int d)
{
return c[a] == c[b] && c[a + d] == c[b + d];
}
void da(int n, int m = 320)
{
// for(int i=0;i<n;i++)printf("%d %d\n",i,r[i]);
int i, j, p, *x = wa, *y = wb, *t;
for (i = 0; i < m; i++)
buc[i] = 0;
for (i = 0; i < n; i++)
buc[x[i] = r[i]]++;
for (i = 1; i < m; i++)
buc[i] += buc[i - 1];
for (i = n - 1; ~i; i--)
sa[--buc[x[i]]] = i;
for (j = 1, p = 1; p < n; j *= 2, m = p)
{
for (i = n - j, p = 0; i < n; i++)
y[p++] = i;
for (i = 0; i < n; i++)
if (sa[i] >= j)
y[p++] = sa[i] - j;
for (i = 0; i < m; i++)
buc[i] = 0;
for (i = 0; i < n; i++)
buc[x[y[i]]]++;
for (i = 1; i < m; i++)
buc[i] += buc[i - 1];
for (i = n - 1; ~i; i--)
sa[--buc[x[y[i]]]] = y[i];
for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++)
x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++;
}
// for(int i=0;i<n;i++)
// printf("%d %d\n",i,sa[i]);
getheight(n);
return;
}
bool Judge(int mid)
{
int Min = 0x3f3f3f3f, Max = -0x3f3f3f3f;
for (int i = 2; i <= n; i++)
{
if (height[i] < mid)
Min = 0x3f3f3f3f, Max = -0x3f3f3f3f;
else
{
Min = min(Min, min(sa[i - 1], sa[i]));
Max = max(Max, max(sa[i - 1], sa[i]));
if (Max - Min > mid)
return 1;
}
}
return 0;
}
int a[MAXN];
int main()
{
while (~scanf("%d", &n) && n)
{
for (int i = 0; i < n; i++)
scanf("%d", &a[i]);
n--;
for (int i = 0; i < n; i++)
r[i] = a[i + 1] - a[i] + 88;
r[n] = 0;
da(n + 1);
int l = 0, r = (n >> 1) + 1, ans = 0;
while (l < r)
{
int m = l + r >> 1;
if(Judge(m))
ans = m, l = m + 1;
else
r = m;
}
if (ans >= 4) printf("%d\n", ans + 1);
else printf("0\n");
}
}
例4:可重叠的 k 次最长重复子串(pku3261)
先二分答案,然后将后缀分成若干组。判断有没有一个组的后缀个数不小于k。
Code
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 2000005;
int buc[MAXN], wa[MAXN], wb[MAXN], n, K;
int r[MAXN], sa[MAXN], Rank[MAXN], height[MAXN];
void GetHeight(int n)
{
int i, j, k = 0;
for (i = 0; i < n; i++)
Rank[sa[i]] = i;
for (i = 0; i < n; height[Rank[i++]] = k)
for (k ? k-- : 0, j = sa[Rank[i] - 1]; r[i + k] == r[j + k]; k++)
;
return;
}
bool cmp(int *c, int a, int b, int d)
{
return c[a] == c[b] && c[a + d] == c[b + d];
}
void da(int n, int m = 1000000)
{
int i, j, p, *x = wa, *y = wb, *t;
for (i = 0; i < m; i++)
buc[i] = 0;
for (i = 0; i < n; i++)
buc[x[i] = r[i]]++;
for (i = 1; i < m; i++)
buc[i] += buc[i - 1];
for (i = n - 1; ~i; i--)
sa[--buc[x[i]]] = i;
for (j = 1, p = 1; p < n; j *= 2, m = p)
{
for (i = n - j, p = 0; i < n; i++)
y[p++] = i;
for (i = 0; i < n; i++)
if (sa[i] >= j)
y[p++] = sa[i] - j;
for (i = 0; i < m; i++)
buc[i] = 0;
for (i = 0; i < n; i++)
buc[x[y[i]]]++;
for (i = 1; i < m; i++)
buc[i] += buc[i - 1];
for (i = n - 1; ~i; i--)
sa[--buc[x[y[i]]]] = y[i];
for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++)
x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++;
}
GetHeight(n);
return;
}
bool Judge(int mid)
{
int l = 0;
for (int i = 2; i <= n; i++)
{
if (height[i] < mid)
l = 0;
else
{
l++;
if(l + 1 >= K) return 1;
}
}
return 0;
}
int main()
{
scanf("%d%d", &n, &K);
for (int i = 0; i < n; i++)
scanf("%d", &r[i]);
da(n + 1);
int l = 0, r = (n >> 1) + 1, ans = 0;
while (l < r)
{
int mid = l + r >> 1;
if (Judge(mid))
ans = mid, l = mid + 1;
else
r = mid;
}
printf("%d", ans);
}