236 字
1 分钟
BZOJ 2818 GCD

Description#

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对.

Input#

一个整数N

Output#

如题

Sample Input#

4

Sample Output#

4

题解#

di=1nj=1n[gcd(i,j)=d]\sum_{d}{\sum_{i=1}^{n}{\sum_{j=1}^{n}[gcd(i,j)=d]}}

=di=1ndj=1nd[gcd(i,j)=1]= \sum_{d}{\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}{\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}{[gcd(i,j)=1]}}}

=TnTnTdTμ(nT)= \sum_{T}{\lfloor\frac{n}{T}\rfloor \lfloor\frac{n}{T}\rfloor\sum_{d|T}{\mu(\frac{n}{T})}}
f[i]=dTμ(Td)f[i]=\sum_{d|T}^{} \mu(\frac{T}{d})

然后线性筛

#include <algorithm> #include <cstdio> #include <cstring> using namespace std; const int N = 10000000; int mu[N + 5], prime[N + 5], g[N + 5]; long long sum[N + 5], cnt; bool isnprime[N + 5]; void get_g() { mu[1] = 1; for (int i = 2; i <= N; i++) { if (!isnprime[i]) { prime[++cnt] = i; mu[i] = -1; g[i] = 1; } for (int j = 1; j <= cnt && i * prime[j] <= N; j++) { isnprime[i * prime[j]] = 1; if (i % prime[j]) mu[i * prime[j]] = -mu[i], g[i * prime[j]] = mu[i] - g[i]; else { mu[i * prime[j]] = 0; g[i * prime[j]] = mu[i]; break; } } } for (int i = 1; i <= N; i++) { sum[i] = sum[i - 1] + g[i]; } } int main() { get_g(); int n; scanf("%d", &n); long long ans = 0, last; for (int i = 1; i <= n; i = last + 1) { last = n / (n / i); ans += (long long)(sum[last] - sum[i - 1]) * (n / i) * (n / i); } printf("%lld\n", ans); }
BZOJ 2818 GCD
https://www.nekomio.com/posts/37/
作者
NekoMio
发布于
2017-07-26
许可协议
CC BY-NC-SA 4.0